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Abstract

Large eddy simulations are presented for the flow in a periodic channel segment, which is laterally constricted by hill-shaped

obstructions on one wall, having a height of 33% of the unconstricted channel. The Reynolds number, based on channel height, is

21,560. Massive separation thus arises on the hills� leeward sides, the length of which is about 50% of that of the periodic segment.

After reattachment, the flow is allowed to recover over about 30% of the segment length before being strongly accelerated over the

windward side of the next hill. The principal challenge of this flow arises from the separation on the curved hill surface and the fact

that the reattachment point, and hence the whole flow, are highly sensitive to the separation process. Simulations were performed

with three grids, six subgrid-scale models and eight practices of approximating the near-wall region in simulations on the two coarser

grids. These were supported by wall-resolved and wall-function simulations for fully-developed channel flow. The principal objective

is to identify the sensitivity of the predictive accuracy to resolution and modelling issues. Coarse-grid simulations are judged by

reference to data derived from two independent highly-resolved simulations obtained over identical meshes of close to 5 million

nodes. Similarly, coarser-grid simulations were also performed with the two codes to enhance confidence in the results. The principal

message emerging from the simulations is that grid resolution, especially in the streamwise direction around the mean separation

position, has a very strong influence on the reattachment behaviour and hence the whole flow. This has serious implications for even

more challenging high-Reynolds-number cases in which separation occurs from gently curved surfaces. The near-wall treatment,

including the details of the numerical implementation of the wall laws, is also shown to be influential, most prominently on the

coarsest grid. The application of the no-slip conditions at the wall at which separation occurs is found to cause substantial errors,

especially in conjunction with poor streamwise resolution, even if the wall-nearest grid nodes are within the semi-viscous sublayer, in

the range 5K yþ K 15. The sensitivity to subgrid-scale modelling is shown to be more modest, with those models returning relatively

low subgrid-scale viscosity giving the closest accord with the highly-resolved simulation.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Numerous studies undertaken over the past few years
(Lesieur and M�eetais, 1996; Moin, 1998; Germano, 1998;

Meinke and Krause, 1998) demonstrate that LES re-

turns impressive predictive accuracy in flows which

feature pronounced periodic components and/or in

which turbulence transport is dictated by the dynamics
of the large-scale eddies associated with separated shear

layers. Examples are vortex shedding behind bluff bodies

in a free stream (Rodi, 1998; di Mare and Jones, 1999),

or behind wall-mounted bluff obstacles (Thomas and

Williams, 1999) or jets in crossflow (Jones and Wille,

1996a,b). In all of these cases, the viscous influence of

the walls, if present, is weak and the spatial scales are
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such that they can be resolved reasonably well by a

relatively coarse, low-aspect-ratio (i.e. close-to-isotro-

pic) grid with the internodal distance being of order 1%

of the scale of the whole flow. In such circumstances, the
non-dissipative processes taking place at subgrid-scale

level are not influential. Moreover, the numerical errors

associated with the resolution of the influential scales

are relatively low, even with second-order schemes, be-

cause these scales have large wavelength-to-grid-dis-

tance ratios and therefore appear relatively smooth to

the grid.

There are many practically important flows and flow
conditions which do not fall into the above �benign�
category and which present LES with a much greater

challenge. These are, almost invariably, of a type in

which the viscous near-wall processes have a major di-

rect or indirect influence on the primary flow properties.

It might be supposed, for example, that a fully-devel-

oped channel flow would be easily resolved well by a

standard LES method. However, this is not generally
the case at high Reynolds numbers, unless an extremely

fine grid is used, which resolves the viscous sublayer

down to a wall-normal distance yþ ¼ Oð1Þ, whilst also

providing a streamwise and spanwise resolution ðDxþ;
DzþÞ ¼ Oð50; 10Þ. In effect, the LES is required to ap-

proach, without further modelling, a DNS near the wall,

where the dynamically important scales diminish rapidly

towards the dissipative ones, and turbulence approaches
a two-component state. An under-resolved LES tends

to return, among others, an erroneous log-law and

excessive anisotropy. Errors can be substantially com-

pounded by numerically disadvantageous features, such

as high rates of grid expansion or contraction, insuffi-

cient box size and low order of approximation. The

simulated channel flow is also materially sensitive to

subgrid-scale modelling, especially the asymptotic be-
haviour of the subgrid-scale viscosity at the wall.

The difficulties highlighted above are pertinent to a

whole range of flows in which the adequate resolution of

boundary layers is an essential pre-requisite to the cor-

rect representation of gross flow features that are sen-

sitive to the structure of the boundary layers. Probably

the most important group includes flows in which a

boundary layer separates from a gently curved or slop-
ing wall due to the geometry-induced adverse pressure

gradient. This occurs, for example, on a highly-loaded

aerofoil or blade, in a diffuser, in a curved duct, in a

channel constricted by a stenosis and on wavy terrain at

sufficiently high undulation amplitude. In all these cases,

the structure of the boundary layer will influence the

separation line, both instantaneous and time-averaged.

At the high Reynolds numbers encountered in prac-
tical applications, the resource requirements of a

wall-resolving simulation quickly become prohibitive,

because of the need to resolve the thin (possibly transi-

tional) boundary layer as well as the details of the ex-

tensive region within which the separation line moves in

time and the large-scale structures within the separated

shear layer and the recirculation zone. In the case of

a spanwise homogeneous flow––for example, an infi-
nitely-swept wing or a very wide duct––the largest scales

dictate the spanwise extent of the simulation box, the

typical ratio of the two being 1:4. To resolve the streaky

spanwise structure of the boundary layer within such a

box may require hundreds of spanwise grid planes and

tens of millions of nodes. This is untenable in most

circumstances, and a compromise must be struck be-

tween resolution and economy to allow the simulation
of such flows. Thus, Kaltenbach and Choi (1995) and

Jansen (1996), both simulating the separated flow

around the NACA 4412 aerofoil at Re ¼ 1:64� 106,

restricted the spanwise extent to a maximum of 5% of

chord, yet used a mesh of 2:4� 106 nodes with a mere 48

spanwise grid planes. Another example is the simulation

of Kaltenbach et al. (1999) of a separated flow at the

moderate Reynolds number of 30,000 within an asym-
metric plane diffuser. In this, the spanwise direction was

treated as statistically homogenous, with the spanwise-

distance-to-channel-height ratio reducing from 4 up-

stream of the diffuser to only 1.5 downstream where the

largest structures are encountered.

Near-wall resolution is also of concern in simulations

of separated flow over a wavy wall, a configuration of

particular interest in the context of meteorological
issues. LES studies by Henn and Sykes (1999), Armenio

and Piomelli (2000) and Salvetti et al. (2001) examine

flows over sinusoidally undulating walls at various am-

plitude-to-wavelength ratios (‘‘wave-slope’’) and chan-

nel-height values of 5–10 wave amplitudes. When the

wave slope exceeds about 0.05, separation occurs in the

trough, although this is often small and longitudinally

inhibited by the pitch. Only the study by Salvetti et al.
(2001) can be regarded as addressing a high Reynolds-

number flow, in so far as near-wall resolution becomes a

serious problem. In that study––as in all others on wavy-

wall flows––a no-slip (NS) condition was prescribed at

the wall, even when the first computational node was,

in Salvetti et al�s case, as far away from the wall as

yþ ¼ 150. None of the studies addressed the sensitivity

of the simulation to variations in the near-wall treat-
ment and, in any breadth, to subgrid-scale modelling,

while resolution issues were considered, at most, by

reference to two meshes, and then at relatively low

Reynolds numbers (based on wave amplitude).

In an effort to achieve a substantial reduction in the

resource requirements of LES for high Reynolds-num-

ber near-wall flows, yet maintain a realistic description

of the effects of near-wall processes on the outer flow, a
number of alternative approximations of the semi-

viscous near-wall layer have been explored since the first

computations of Deardorff (1970) and continue to be of

considerable interest today due to their practical rele-
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vance. Several approaches have emerged, one of which is

to adopt an assumed shape for the instantaneous ve-

locity between the nodes closest to the wall and the wall

itself. Variants of this ‘‘wall-function’’ approach arise
from the use of the 1/7th power-law profile (Werner and

Wengle, 1991) and the log-law profile (Gr€ootzbach,
1987). Both are designed to return an estimate of the

instantaneous wall shear stress for a given velocity at the

wall-nearest node, which then serves as a wall boundary

condition. An alternative method by Schumann (1975)

estimates the instantaneous wall-shear stress from the

instantaneous near-wall velocity and the ratio of the
time-averaged values of the two, the latter obtained from

the time-mean law of the wall and the time-averaged

near-wall velocity. As is shown by Wille (1997) and also

later in this paper, wall-function methods allow rea-

sonable simulations of channel flow to be achieved on

rather coarse grids. Virtually nothing is known, how-

ever, about the effectiveness of the technique in sepa-

rated flows.
Another route involves the use of unsteady RANS

methods, employing conventional turbulence models,

for the near-wall layer. This layer is then matched to the

outer LES region, either at a prescribed interface or a

location dictated by a length-scale criterion. The RANS

scheme may involve the solution of the full Navier–

Stokes equations, or their thin shear-layer forms or even

algebraic simplifications thereof, which approximate the
transport terms using the interface values or ignore them

altogether. The underlying rationale is that RANS so-

lutions for attached near-wall flow are relatively insen-

sitive (at least in statistically steady conditions) to the

streamwise and spanwise resolution, provided the wall-

normal grid is fine enough. This is in contrast to the

low-aspect-ratio (i.e. very expensive) grids required for

adequate simulations of the near-wall layer. One variant
of this two-layer method is that of Balaras et al. (1996)

and Hoffmann and Benocci (1994) who used a mixing-

length model to determine the eddy viscosity in the

sublayer. A recent study by Cabot and Moin (1999)

demonstrates that this approach yields acceptable re-

sults for channel and backward-facing-step flows. An-

other variant is that of Spalart et al. (1997) in which the

eddy viscosity is obtained from the Spalart-Almaras
one-equation model. This particular combination, re-

ferred to as detached eddy simulation (DES) was ap-

plied by Shur et al. (1999) to a high-incidence aerofoil in

which the flow separated close to the aerofoil�s leading

edge. This cannot be regarded as a searching test case,

however, because separation is induced in a region of

intense curvature, so that the location of the separation

line is not materially sensitive to the structure of the
upstream boundary layer. The DES method was later

applied to the attached flow in a turbulent plane channel

by Nikitin et al. (2000) with moderate success. While

intended to be used with a substantially coarser dis-

cretisation in the streamwise and spanwise directions,

relative to conventional LES, the method was observed

to generate an artificial buffer layer around the plane

interfacing the near-wall and LES regions. As the Rey-
nolds number increases, DES relies on a progressive rise

in wall-normal grid density, to ensure an appropriate

resolution of the viscous near-wall region. This has two

major consequences: first, resource implications become

increasingly important; second, extremely high cell as-

pect ratios occur near the wall. The latter might be ac-

ceptable in steady RANS computations, but with LES,

the level of unsteadiness and its contribution to the
statistics remain high. Hence, the large aspect ratio may

have a seriously deleterious effect on accuracy in flows in

which viscous near-wall processes are important.

A different hybrid strategy, involving the use of a

two-equation k–x model for the near-wall layer, was

recently applied by Davidson and Peng (2001) to a

channel flow and the separated hill-in-channel flow,

which is also the primary focus of this paper. The results
were variable, featuring an anomalous behaviour in the

interface region and demonstrating the challenges of

matching properly the RANS layer to the LES region.

In an earlier paper, Davidson (2000) also reports

rather poor DES computations for that same separated

hill-in-channel flow, but the observed errors may have

been caused, at least in part, by the excessively coarse

170,000-node grid used. There is no doubt that much
research remains to be done before the pros and cons of

DES and other LES-RANS hybrid methodologies are

fully understood in the context of simulating high-

Reynolds-number near-wall flows.

In this paper––a companion to that of Mellen et al.

(2002b)––we investigate the effectiveness of using dif-

ferent wall-function formulations within an LES meth-

odology applied to a flow which separates from a curved
surface. The geometry, shown in Fig. 1, is a periodic,

spanwise-homogeneous channel segment with one wall

containing hill-shaped constrictions, with a streamwise

period of 9 hill heights. This geometry leans on an ex-

perimental configuration examined by Almeida et al.

(1993), and it was designed to meet a number of specific

desiderata judged to be associated with a good test case

for LES studies. Detailed arguments justifying the
choice are contained in Mellen et al. (2002b).

In the absence of experimental data for the new

configuration, highly resolved simulations have been

performed with two entirely independent LES codes to

generate reference data, and the two sets of results agree

closely. In the companion paper (Mellen et al., 2002b),

these simulations are presented in detail and analyzed in

terms of the fundamental physical properties of the flow,
including stress budgets and spectra. The present paper

focuses on the LES modelling of the flow by using

substantially coarser grids, with the highly resolved

simulations serving as a benchmark. In particular, the
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sensitivity of the solution to subgrid-scale modelling,
grid density and approximate near-wall treatments is

investigated.

In what follows, Section 2 discusses key features of

the present flow configuration. In Section 3, the subgrid-

scale models employed are presented and briefly dis-

cussed. Section 4 gives information about the wall

models being used, while Section 5 outlines the numer-

ical schemes of the two codes employed. In presenting

different models and implementation variants, we make

use of abbreviations defined in the text and summarised

in Table 1. Results are presented and discussed in Sec-

tions 7 and 8, leading to the conclusions contained in
Section 9.

2. The simulated configuration

The present configuration has been specifically de-

fined as a test case for investigating issues of subgrid-

scale and wall-modelling in the presence of massive
separation from a smooth curved surface (Mellen et al.,

2000). As such, the flow has to contain the key generic

phenomena of interest, whilst being amenable to a

simulation at economically tolerable cost.

The chosen geometry is based on the periodic con-

figuration studied experimentally by Almeida et al.

(1993). Concerns about the geometric parameters of that

configuration––especially the short crest-to-crest dis-
tance typical of the wavy-terrain geometries mentioned

in Section 1, about the accuracy of the experimental

data and about the implied computational costs have

motivated the definition of a modified geometry so as to

satisfy, as well as possible, the needs and objectives of

the present LES study. The rationale of the modifica-

tions is discussed in detail in Mellen et al. (2000, 2002b)

by reference to several related configurations examined
in past studies.

The geometry of the periodic segment is shown in

Fig. 1. The shape of the constrictions has been retained

from Almeida et al. (1993) and is available in the ER-

COFTAC database. 1 The channel height is Ly ¼ 3:035
h and the streamwise period length is Lx ¼ 9h. The

Reynolds number, based on the bulk velocity above the

hill crest and the hill height, is Reh ¼ 10595, corre-
sponding to ReLy ¼ 21,560, based on the channel height

and the bulk velocity. While this value is not as high as

might be desirable for investigating the effectiveness of

wall-functions in engineering-flow conditions, it had to

be kept down to a level allowing almost fully resolved

simulations to be undertaken at tolerable cost. Such

simulations were undertaken with a mesh of about 5

million nodes at a cost of about 30,000 CPU hours per
run on a Cray T3E. With this mesh, the ratio of in-

ternodal distance to the Kolmogorov length was of

order 5–8 over most of the flow domain. At these con-

ditions, the subgrid-scale viscosity is of the order of the

fluid viscosity in the outer flow (away from the wall) and

subgrid-scale transport is insignificant.

Streamwise periodicity removes the need for a speci-

fication of inflow conditions, thus eliminating a number
of potential sources for error and differences between

Fig. 1. Geometry of periodic-hill flow with instantaneous iso-pres-

sure and time-averaged streamfunction contours obtained in highly-

resolved LES.

Table 1

List of abbreviations

Abbreviation Signifies

BF Backflow wall law

DES Detached-eddy simulation

DNS Direct numerical simulation

DSM Dynamic Smagorinsky model

DMM Dynamic mixed model

LDSM Localized dynamic Smagorinsky model

LES Large-eddy simulation

LESSOC University of Karlsruhe Code

LL2 Two-layers log-law (point-wise)

LL2-i Integrated form of LL2

LL3 Three-layers log-law

LLK Two-layers log-law using the resolved

turbulence energy

MSM Mixed-scale model

NS No-slip wall-treatment

RANS Reynolds-averaged Navier–Stokes

SGS Subgrid-scale

SIP Strongly implicit procedure

SLOR Successive line over-relaxation

SM Smagorinsky model

SSM Scale-similarity model

STREAMLES Imperial College Code

WALE Wall-adapting local eddy-viscosity model

WD Wall-damping function (Aþ ¼ 25Þ
WW Werner–Wengle wall law (integrated

form)

WW-p Point-wise form of WW 1 http://fluindigo.mech.surrey.ac.uk/database/
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results arising from different codes. The required flow

rate was imposed through a pressure-forcing term which

was kept constant in space and adjusted in time so as to

yield, at each instant, the desired flow rate. Thus, the
bulk Reynolds number was held invariant across the

entire range of simulations, while the pressure gradient

varied from simulation to simulation, depending upon

the wall-shear stress returned by the associated simula-

tion.

The need for streamwise decorrelation is well under-

stood in channel-flow simulations in which, typically,

Lx=Ly ¼ p. In the present case, decorrelation is aided by
the relatively large periodic crest-to-crest distance,

Lx ¼ 9h. With this choice, reattachment is not enforced

by the closeness of consecutive hills, in contrast to the

�wavy-terrain� configuration mentioned earlier. This

renders the structure of the separation region much

more sensitive to the quality of the simulation and the

modelling details, which is desirable for a searching as-

sessment. The spanwise extent is Lz ¼ 4:5h, with peri-
odicity of the instantaneous flow being imposed. Ideally,

Lz would have been chosen to be even larger, as dis-

cussed in Mellen et al. (2000). Thus, although the

spanwise correlation of the streamwise velocity was

observed to decay to zero within half of the spanwise

extent in most regions of the domain, values of around

)0.2 at the half-span position prevailed in some parts of

the free shear layer. However, the effect of this on the
flow properties of interest were observed to be insignif-

icant. Thus, the separation and reattachment locations

resulting from a coarse-grid LES (performed on what is

referred to as ‘‘Grid 1’’ in Fig. 2) only changed from 0.5

to 0.45 and from 3.20 to 3.25, respectively, when the

spanwise domain size was doubled, with the spanwise

resolution being maintained by also doubling the num-

ber of spanwise grid planes. The influence of the span-

wise domain size on the flow physics is further assessed

in Mellen et al. (2002b). Limiting the spanwise domain

to Lz ¼ 4:5h may therefore be claimed to have intro-

duced only a minor deviation from an infinite domain,
and this value was used in all but one of the computa-

tions reported below. This choice is significantly less

restrictive than that implied by the �minimal flow unit� of
Jim�eenez and Moin (1991).

3. Subgrid-scale modelling

3.1. Overview

The application of any spatial filtering operation

to the Navier–Stokes equations––here, done implicitly

through the numerical approximation being tied to the

cell size D––leads to the LES equations:

oui
ot

þ ouiuj
oxj

¼ � op
oxi

þ 2m
oSij

oxj
� osij

oxj
ð1Þ

where Sij ¼ 1=2 oui=oxj þ ouj=oxi
� �

and sij ¼ uiuj � uiuj
represents the unknown subgrid-scale stresses arising

from the presence of scales smaller than the filter width.

With one exception, the models used herein to ap-

proximate the subgrid-scale stresses are based on the

eddy-viscosity concept,

saij ¼ sij � 1
3
dijskk ¼ �2mtSij ð2Þ

where mt is the SGS viscosity. The contribution from
the diagonal term proportional to skk is lumped into

a modified pressure and does not need to be ac-

counted for. For positive viscosity, this formulation

possesses desirable (though not necessarily correct) dis-

sipative properties, but provides––as is the case with

Fig. 2. Cuts in the x–y plane through the two coarse grids used to investigate approximate near-wall treatments. Above: Grid 1. Below: Grid 2.
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RANS-based eddy-viscosity formulations––a poor rep-

resentation of SGS transport. This latter weakness is not

especially important when the SGS eddies are small,

relative to the resolved range of energetic eddies which
tend to strongly dominate turbulence transport, but can

be seriously detrimental to accuracy when the resolved

range is narrow, i.e. when the grid is (locally or globally)

coarse.

The SGS models investigated in simulations to be

presented are as follows:

• The constant-coefficient Smagorinsky model (SM)
(Smagorinsky, 1963);

• The dynamic Smagorinsky model (DSM) (Germano

et al., 1991; Lilly, 1992);

• The localized dynamic Smagorinsky model (LDSM)

(Piomelli and Liu, 1995);

• The mixed-scale model (MSM) (Sagaut, 1996);

• The wall-adapted local eddy-viscosity (WALE)

model (Ducros et al., 1998);
• The dynamic mixed model (DMM) (Zang et al.,

1993), based on the scale-similarity model (Bardina

et al., 1980);

The last model in the above list is not of the eddy-

viscosity type and is able to account for backscatter.

However, as discussed below, its stable implementation

requires the addition of dissipation by means of an
eddy-viscosity contribution, which then limits the level

of backscatter the model is able to return.

3.2. Smagorinsky-type models

All models considered in this section are based on the

original Smagorinsky formulation (SM) (Smagorinsky,

1963)

saij ¼ �2ðCsDÞ2jSjSij ¼ �2mtSij ð3Þ

where jSj ¼ ð2SijSijÞ1=2, D ¼ ðDxDyDzÞ1=3 and Cs ¼ 0:1
in the basic constant-coefficient form of (3).

One obvious defect of this basic form is that the SGS
viscosity does not vanish at solid walls where the flow is,

effectively, laminar. To address this defect, Cs is here

multiplied by the van Driest damping function (Van

Driest, 1956):

l ¼ 1� e�yþ=Aþ ð4Þ
with Aþ taken as 25 (WD). While this does not give the

correct (cubic) rate of decay (Hinze, 1975) as the wall is

approached, it does ensure that the SGS viscosity van-
ishes within the viscous sublayer.

The dynamic form of the Smagorinsky model (DSM),

Germano et al. (1991), allows for Cs to vary spatially

and temporally through a process in which the evolving

resolved flow is test-filtered on on a coarser scale. Here,

we adopt the test filter bDD ¼ 2D together with the least-

squares minimization of Lilly (1992). The resulting value

of Cs varies rapidly in time and space, frequently be-

coming negative. For reasons of numerical stability, Cs

needs to be limited and smoothed by means of temporal
or spatial averaging. Thus, in all computations reported

below averaging has been performed in the homoge-

neous directions of the flow and the positivity constraint

m þ mt P 0 has been applied.

The LDSM is another variation of Germano�s pro-

posal, introduced by Piomelli and Liu (1995). This is

intended to circumvent the difficulty that the spa-

tially varying coefficient Cs cannot be formally extracted
from the tensorial test-filter stress–strain relationship of

Germano, unless it is assumed to be invariant across the

test-filtered domain. This is done by retaining the spa-

tially-varying Cs, as is formally correct, under the test-

filtered subgrid-scale stress tensor and then using a

spatially varying estimate C�
s from the previous time step

to approximate Cs under the test filter. Otherwise, Lilly�s
least-square minimisation is again applied to determine
Cs. This method has been found to be fairly stable in the

present study, subject to local averaging of Cs being

performed with values at immediate neighbouring nodes

and the constraint of positive total viscosity being im-

posed.

The MSM, proposed by Sagaut (1996), combines the

Smagorinsky SGS viscosity, mt ¼ ðCsDÞ2jSj, assumed to

relate to the large scales, with mt ¼ CqDq1=2, relating to
the small scales, where q is the SGS turbulence energy.

The model then arises as a weighted geometric average

of these two viscosities, namely:

mt ¼ CMðjSjÞaq1�aD
1þa ð5Þ

where a is a weighting factor in the range 0–1 and CM

a constant. In the computations below, the values

CM ¼ 0:1 and a ¼ 0:5 have been used. As the SGS en-

ergy q is not immediately available, it is estimated by a

filtering operation over the test filter bDD, equivalent to

that adopted for the dynamic model, i.e.

q ¼ 0:5u0iu
0
i with ui0 ¼ ui � buiui ð6Þ

Because of the manner in which q is determined, the

model ensures a monotonic decay of the SGS viscosity

as the wall is approached and vanishing eddy-viscosity

level in non-turbulent conditions. It shares this property

with the dynamic form of the model, but is considerably

simpler.
The WALE, proposed by Ducros et al. (1998), is

specifically designed to return the correct wall-asymp-

totic yþ3-variation of the SGS viscosity (Hinze, 1975).

The model determines the viscosity from

mt ¼ CwD
2

S
d
ijS

d
ij

� �3=2

SijSij

� �5=2 þ S
d
ijS

d
ij

� �5=4
ð7Þ
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where Sij is the strain-rate tensor,

S
d
ij ¼ 1

2
g2
ij

�
þ g2

ji

�
� 1

3
dij=g2

kk ð8Þ

is the traceless symmetric part of the tensor g2
ij ¼ gikgkj,

with gij ¼ oui=oxj, and Cw ¼ 0:1.

3.3. The scale similarity model and the dynamic mixed

model

The scale similarity model (SSM) (Bardina et al.,

1980) represents the SGS term by the modified Leonard

term Lmij ¼ �uui�uuj � ��uui�uui ��uuj�uuj. Filtering denoted by the upper

bar is, in contrast to the first filter, an explicit operation

with filter width equal to the grid spacing. This is im-

plemented in the form of three one-dimensional filters,

one in each coordinate direction, with weights 1/8, 6/8,
1/8, as proposed by Zang et al. (1993). This model cir-

cumvents the use of a SGS viscosity and thus admits

back-scattering. Experience shows, however, that the

model is not sufficiently dissipative, so that an additional

eddy-viscosity term is needed. The augmented model

then arises as (Bardina et al., 1980):

saij ¼ ðLmÞaij � 2mtSij ð9Þ

Despite the addition of the eddy-viscosity term, back-
scatter is still effective when the Leonard term domi-

nates. The coefficient determining the magnitude of the

eddy viscosity in mt ¼ CsD
2jSj can be calculated by

means of the dynamic procedure to finally yield the

DMM (Zang et al., 1993). Again, averaging is per-

formed over homogeneous directions, and the total

viscosity is constrained to be positive.

4. Near-wall treatment

4.1. Rationale and overview

At high Reynolds numbers, LES cannot resolve the

eddies in the semi-viscous near-wall region, unless a very

fine mesh is used. Even if such a fine mesh could be
accommodated normal to the wall, the reduction in the

turbulent scale in all three directions implies the need for

similar refinements in the other two directions. This is

not tenable on economic grounds and necessitates the

adoption of an approximate treatment which bridges the

near-wall layer.

Alternative approaches are based on the use of con-

ventional low-Re turbulence models or semi-analytical
‘‘wall laws’’. The former approach, realised most con-

spicuously in Spalart�s ‘‘detached eddy simulation’’

strategy (Spalart et al., 1997) interfaces the near-wall

RANS and LES regions at a position determined locally

by the grid, especially the wall-parallel cell dimensions

which may be constrained by wall-remote resolution

requirements. Typically, this position is quite close to

the wall, often not far above the buffer layer. With a wall
function, the wall-parallel spacing is of no consequence,

and the use of a blended function, valid over the entire

near-wall layer, allows the interface to be placed at any

distance normal to the wall by choosing the size of the

wall-adjacent grid cell.

In essence, a wall-law approximation is required to

return the correct instantaneous wall-shear stress cor-

responding to the known instantaneous velocity at the
wall-nearest computational node. The wall-shear stress

is then used as the wall boundary condition in con-

junction with the impermeability condition. Usually, the

grid point closest to the wall needs to be located in

the log-law region, beyond the semi-viscous sublayer.

However, more general formulations exist, which do not

impose this constraint, as they are constructed based on

a composite relation uþðyþÞ applicable across the entire
near-wall layer. This is of particular advantage in sep-

arated flows in which yþ varies greatly across the near-

wall grid plane, assuming very small values at separation

and reattachment points (which also vary in time, of

course).

Two different methods have been presented in the

literature. Both are based on the assumption that

the instantaneous near-wall velocity is in phase with the
instantaneous wall shear stress. In Schumann�s method

(Schumann, 1975), the wall shear stress is taken pro-

portional to the instantaneous near-wall velocity, the

proportionality factor being the ratio of the time-

averaged values of the two. An evident disadvantage

of the method is that it relies on statistical informa-

tion which needs to be derived from the simulation

itself. The other technique is to use a wall law to di-
rectly relate the instantaneous velocity at the first grid

point in the interior of the flow to the instantaneous

shear stress.

In the present study, the latter approach has been

adopted. Five different wall laws have been investi-

gated:

• a two-layer log-law (LL2), with the wall-shear veloc-
ity used as the velocity scale;

• a three-layer log-law (LL3), similar to LL2 but ac-

counting for the continuous transition between the

�fully-viscous� and �fully-turbulent� layers;
• a two-layer log-law, with the turbulence energy used

as a velocity scale (LLK);

• a 1/7th power-law based formulation blended with a

linear near-wall law (WW);
• a formulation combining the Werner–Wengle treat-

ment for forward near-wall flow with a back-flow

model with scaling extracted from the reverse-flow re-

gion (back-flow, BF).
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The following subsections summarise the principal ele-

ments of the wall-laws.

4.2. Log-law-based approximations

The simplest formulation (LL2) is based on the as-

sumption that the near-wall layer consists (in an in-

stantaneous sense) of a fully viscous sublayer and a fully

turbulent superlayer with the interface defined by

yþ 6 11. Thus,

uþ1 ¼ yþ1 if yþ1 6 11

j�1 lnðEyþ1 Þ if yþ1 > 11

�
ð10Þ

with j ¼ 0:42 the von Karman constant, E ¼ 9:8, uþ1 ¼
u1=us, us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
and yþ1 ¼ y1us=m. Here, u1 is the re-

solved velocity tangential to the wall at the wall-nearest

point, and y1 the distance of this point from the wall. To

be of use as a boundary condition in a simulation, re-
lation (10) is assumed to hold in an instantaneous sense,

so that the instantaneous shear stress can be deduced

from y1 and u1.

The profile given by (10) exhibits a kink at yþ1 ¼ 11,

which is unrealistic. To account for the smooth transi-

tion between the linear and the logarithmic region in the

buffer layer, observed in experiments and DNS, a log-

arithmic fit can be used in the buffer layer, resulting in
the following three-layer (LL3) law (Breuer and Rodi,

1996):

uþ1 ¼
yþ1 if yþ1 6 5

A lnðyþ1 Þ þ B if 5 < yþ1 6 30

j�1 lnðEyþ1 Þ if yþ1 > 30

8<
: ð11Þ

with A ¼ ðj�1 lnð30EÞ � 5Þ= lnð6Þ and B ¼ 5� A lnð5Þ.
In the above log-laws, the velocity scale in yþ is

formed with the wall-shear stress. This form therefore

establishes a rigid linkage between the near-wall velocity

and the wall-shear stress and gives a seriously erroneous
wall shear stress if the near-wall flow departs signifi-

cantly (in a Reynolds-averaged sense) from the state of

turbulence-energy equilibrium. In RANS computations,

the validity of the log-law has been extended consider-

ably by using the turbulence energy, rather than the

shear velocity, to scale y. This substitution is based on

the equivalence u2s ¼ C0:5
l k which is strictly valid only in

the presence of turbulence-energy equilibrium (Launder
and Spalding, 1974). This concept has been applied to

LES (Murakami et al., 1993; e.g.) with k ¼ k1 being the

resolved turbulence energy at the wall-nearest node. For

this approach (LLK), the universal wall distance thus

arises as:

yþ1 ¼ yC1=4
l k1=2

1 =m ð12Þ

with Cl ¼ 0:09 and

k ¼ 0:5hðui � huiiÞðui � huiÞi ¼ 0:5ðhuiuii � huiihuiiÞ
ð13Þ

where ui is the instantaneous velocity while h�i indicates

an averaging operator in time and in any homogeneous

direction present. Otherwise, the wall law is identical to

that given by Eq. (10).
A disadvantage of approximation (12) is that it re-

quires the resolved near-wall turbulence energy, which

is, however, part of the solution. In practice, this energy

is determined from �on-the-run� time-averaging as the

simulation progresses. This average stabilizes fairly

quickly, well before the collection of statistical data

commences by ensemble-averaging. Hence, the penalty

in terms of computing resource is minimal.
Any of the above forms may be implemented, com-

putationally, in two ways. The simpler (default) route is

to determine the wall-shear stress upon a direct substi-

tution of the resolved wall-parallel velocity at the wall-

nearest node into the assumed near-wall profile. The

other route is based on the notion, consistent with

the finite-volume method, that the resolved velocity at

the wall-nearest node is the average value over the as-
sociated cell. Hence, the assumed near-wall profile is

integrated in wall normal direction from which then a

relationship is obtained between the cell-averaged and

the wall-shear velocities. The wall-shear stress then fol-

lows from a substitution of the resolved near-wall ve-

locity into this integral relationship. Both approaches

can be defended, although the latter can be argued to be

inconsistent with the order of the (linear) approxi-
mations used to determine the numerical fluxes on the

finite-volume faces. For a linear velocity profile (i.e.

when the near-wall cell is wholly within the viscous

sublayer), both implementations give identical wall-

shear-stress values. However, significant differences can

arise when the cell extends into the buffer and turbulent

layer where the velocity profile is highly non-linear. This

sensitivity will be illustrated below through simulations
undertaken with the two-layer wall-law used in its de-

fault, �point-wise� form (LL2) and in its cell-integrated

form (LL2-i).

4.3. The Werner–Wengle wall law

The log-law, if used exclusively with the shear ve-

locity, is trancendental and requires an iterative inver-
sion for the wall shear stress. On the other hand, the

alternative of using k in yþ renders the wall-law quasi-

explicit, but requires the evaluation of the resolved

turbulence energy. Both forms are computationally

cumbersome. A simpler two-layers approximation,

proposed by Werner and Wengle (1991), is based on the

assumption of a 1/7th power-law outside the viscous

sublayer, interfaced with the linear profile in the viscous
sublayer (WW):

uþ1 ¼ yþ1 if yþ1 6 11:8

8:3ðyþÞ1=7 if yþ1 > 11:8

�
ð14Þ
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Werner and Wengle (1991) propose the use of the inte-

grated form of the above profile over the near-wall

cell––a default implementation denoted by WW and

explained in the previous section by reference to LL2-i.
While this option has been adopted in most simulations

to follow, one simulation, denoted by WW-p, has been

performed in which the wall-shear stress was obtained

directly from Eq. (14), i.e. through a point-wise substi-

tution. The comparison between the simulations using

WW and WW-p thus complements the analogous

comparison between the simulations performed with

LL2-i and LL2.

4.4. The backflow wall law

With all wall functions discussed so far, no particular

assumption on the direction of the flow is implied. Thus,

the tangential velocity vector is computed, yielding the

corresponding shear stress, which is then decomposed

into grid-oriented components. Hence, these laws also
work, numerically, for reverse flow. However, physi-

cally, the wall-scaling applied to simple boundary-layer

flows is not valid within the near-wall, reverse-flow layer

of a recirculation bubble.

The analysis of separating, recirculating flow (Simp-

son, 1983; Devenport and Sutton, 1991) suggests that

the characteristic scales for velocity and length within

the recirculation region are, respectively, the maximum
average backflow UN and and the distance of this

maximum yN from the wall. The characteristic Reynolds

number is then Re� ¼ yNUN=m. The values UN , yN , and
hence Re�, can be determined locally for each grid point

on the wall by a search in wall-normal direction.

In Mathey et al. (2002), the relation

U � ¼ Cjðy� � logðy�Þ � 1Þ ð15Þ
has been proposed, where U � ¼ ðU þ UNÞ=Us and y� ¼
y=yN , with U denoting the near-wall average tangential

velocity. Comparisons with simulation data, similar to
those in Fig. 9, have shown that the value Cj ¼ 1=j
(j ¼ 0:41) gives a good representation of the data. This

equation turned out to be computationally ill-condi-

tioned, however, and hence impractical for use as a

boundary condition in the simulations. As a stable al-

ternative, the following direct relationship between Re�

and c�f ¼ 2sw=qU 2
N has thus been devised (Mathey et al.,

2002):

Re� ¼
Cj

ffiffiffiffiffiffiffiffiffiffi
2=c�f

q
e

j
ffiffiffiffiffiffiffi
2=c�f

p
� 1

� �
; Re� > Re�c

2:41 2=c�f
� �1:087

; Re� < Re�c

8<
: ð16Þ

The value Re�c ¼ 75:1 for the intersection has been cho-

sen so as to yield an overall continuous function. The

low-Re� part is the empirical formula of Le et al. (1997)

which is close to the laminar relation. This is used when
the grid is sufficiently fine to resolve the viscous sub-

layer. In regions of forward flow, the Werner–Wengle

model is applied. The blending between both is quite

natural and accomplished by just switching from one to

the other relation for the wall-shear stress. The distinc-
tion between forward and backward flow is made ac-

cording to the direction of the flow at the wall-adjacent

grid node, the main flow in the channel serving as a

reference. The above implementation is denoted by BF

in results to follow.

5. Numerical framework

5.1. The STREAMLES code

STREAMLES is one of two entirely independent

codes used to generate the results reported in the present

study. The code, developed by Lardat and Leschziner

(1998), applies to incompressible flow and uses a non-

orthogonal finite-volume procedure with collocated,
cell-centred storage of all flow properties and cartesian

velocity components. The numerical scheme is based on

a fractional-step method, with the time derivative being

discretised by a second-order backward approximation.

The convection and diffusion terms, approximated by

centred schemes of second-order accuracy, are advanced

in time using the Adams-Bashfort method. The pressure

is obtained as a solution of the pressure-Poisson prob-
lem by means of a partial-diagonalisation technique

(Schumann and Sweet, 1988) and a V-cycle multigrid

algorithm operating in conjunction with a successive line

over-relaxation scheme. Updates of the intermediate

cell-centred and contravariant cell-face velocities are

then effected via two different, respective representations

of the discrete pressure gradient in a manner akin to that

proposed by Rhie and Chow (1983). STREAMLES is
fully parallelized and has been run on up to 256 Cray

T3E processor partitions at efficiencies of the order of

90%. Parallel-performance aspects of the code, relating

to several computer architectures, are discussed in

Temmerman et al. (2000).

5.2. The LESOCC code

Large eddy simulation on curvilinear coordinates

(LESOCC) is a general, multi-block, finite-volume

scheme developed by Breuer and Rodi (1994, 1996);

Mathey et al. (1999) and Mellen et al. (2000) for the

solution of the incompressible-flow equations. Its basic

cell and storage arrangements are very similar to those

of STREAMLES, as is the centred, second-order spatial

discretisation of the convective and viscous fluxes. In
contrast, however, time advancement is effected by an

explicit, low-storage Runge–Kutta method. Conserva-

tion of mass is achieved by the SIMPLE algorithm, with

the pressure-correction equation being solved by the SIP
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procedure of Stone (1968). The momentum-interpola-

tion method of Rhie and Chow (1983) is employed to

prevent pressure–velocity decoupling and associated

oscillations.

6. Plane channel flow simulations

As a precurser to the study of separated periodic hill

flow, simulations for fully-developed channel flow were

undertaken for two reasons: first, to investigate the

performance of alternative subgrid-scale models, thus
allowing the selection of one principal model for use in

the separated hill flow; second, to examine the ability of

alternative wall laws to return the log-law behaviour

with coarse near-wall grids for a Reynolds number that

is comparable to that of the hill flow.

Simulations were performed for friction Reynolds

numbers in the range 1806Res 6 1050, the upper limit

corresponding to a mean-flow Reynolds number of
21000. Attention focuses here on the case Res ¼ 590 for

which DNS solutions byMoser et al. (1999) are available

for comparison. Most wall-resolving simulations were

done on a grid containing 96� 64� 64 nodes, covering a

box of 2ph� 2h� p h and giving cell sizes in wall units

of (Dxþ ¼ 38, Dyþ ¼ 2� 42, Dzþ ¼ 29), the lower limit

Dyþ ¼ 2 being that at the wall. With this cell size, the first

grid point is at yþ1 ¼ 1 from the wall. Statistical proper-
ties were assembled over a period of 12 flow-through

times, sufficient to ensure fully converged levels.

Excluding wall-function simulations, which will be

considered later, a total of six modelling practices were

adopted, SM, SM-WD, DSM, LDSM, MSM, and

WALE, as discussed earlier (see also Table 1). Perfor-

mance was judged by reference to mean velocity, shear

Reynolds number and Reynolds-stress components, all
relative to the DNS solution. These comparisons, not

included here, suggested that the SGS viscosity returned

in the buffer region was especially influential, consistent

with the fact that the SGS viscosity was of the same

order as the molecular viscosity. Fig. 3 demonstrates

that different models return materially different SGS

viscosity distributions. The logarithmic scale, adopted to

enhance the near-wall variations, somewhat obscures
the fact that the maximum viscosity values, occuring in

the log-law layer, vary within a range of about one order

of magnitude, between 0.1 and 1 times the fluid viscos-

ity, with the WALE model returning the lowest value

and the LDSM the highest. However, this difference is

not in itself influential because the SGS transport is a

small proportion of the resolved transport in the log-law

region. Of greater importance is the viscosity level in the
upper portion of the buffer layer and the rate of change

in the SGS viscosity within the buffer layer as a whole. It

has been observed that high SGS viscosity in the region

10 < yþ < 20 tends to depress the velocity in the buffer

and log regions below the DNS variation, while the re-

verse occurs when the viscosity in this region is low.

The theoretical wall-asymptotic behaviour is cubic in

yþ, represented by the straight line in Fig. 3. The only

two models of those employed that return this variation

reasonably well are the WALE model and the Dynamic
variants, although the magnitudes of SGS viscosity

these models give away from the wall differ substan-

tially. While the precise rate of decay in the viscous

sublayer is not of major importance, in view of the very

low levels of the viscosity, it is important that the decay

is reproduced broadly correctly in order to ensure that

the SGS viscosity becomes, as it should be, an insignif-

icant proportion of the fluid viscosity. Overall, the
WALE model was found to return the best velocity

distribution, although the representation of the buffer

region is not entirely satisfactory.

The performance of the wall laws described in Section

4 is examined here for the same channel flow as above,

but with a deliberately coarsened grid containing 64�
32� 32 cells. The cell dimensions in wall units are ðDxþ,
Dyþ, DzþÞ ¼ ð58; 37; 58Þ. All wall formulations were
used in combination with the WALE SGS model. Table

2 gives errors in wall-shear Reynolds number and centre-

line velocity relative to the DNS. Velocity and turbu-

lence-intensity profiles are given in Figs. 4 and 5.
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Fig. 3. Subgrid-scale viscosity in channel flow, Res ¼ 590; sensitivity to

SGS modelling.

Table 2

Wall shear stress and centreline velocity for channel flow; wall-function

simulations

SGS and wall

model

Res Error to

DNS (%)

uc=Ub Error to

DNS (%)

DNS 584 – 1.1418 –

WALE þ LL2 558.5 )4.4 1.12 )1.91
WALE þ LL3 557.8 )4.5 1.118 )2.08
WALE þ LLK 537.6 )7.9 1.13 )1.03
WALE þ WW 598.4 2.5 1.133 )0.08
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Considering the coarseness of the grid used, the re-

sults are certainly not disappointing, especially in terms

of the resolution of the velocity and turbulence intensi-

ties away from the wall, over 80% of the channel width.

Table 2 shows that the three log-law formulations

slightly underpredict the wall-shear velocity, leading to

the log-law profile (see Fig. 4) lying slightly above the
DNS solution, while the Werner–Wengle formulation

returns the opposite behaviour, but gives results quite

close to the DNS solution. A degree of uncertainty arises

here from the fact that the log-laws were implemented so

as to yield the wall-shear stress using, directly, the ve-

locity u1 at the wall-nearest node y1, while the WW

model involved the cell integration described in Section

4.3; both are the default implementations. This may be
the reason for the offset in the wall-nearest velocity seen

in Fig. 4.

The turbulence intensities (Fig. 5) are reasonably well

predicted. Based on the results presented and additional

observations not discussed herein, the Werner–Wengle

formulation was judged to give, overall, the best per-

formance, and this led to its preferential adoption for

most of the hill-flow calculations considered below.

7. Highly-resolved simulations

The absence of experimental data for the periodic-

hill flow necessitated the generation of a reference data-

base extracted from reliable simulations for that

flow. Two such simulations were performed, indepen-

dently, using the two independent codes described in

Section 5. The same mesh of close to 4:6� 106 (Nx �
Ny � Nz ¼ 196� 128� 186) interior cells was employed

in both cases. This high-quality mesh––designated

‘‘Grid 3’’ in the discussion to follow––is close to or-
thogonal and of low aspect ratio over most of the do-

main. The mesh-expansion ratio does not exceed 1.05,

and the wall-nearest computational point is located, in

terms of wall units, at a value of about 0.5 over most of

the lower wall. At the upper wall, a wall-function ap-

proach was adopted for cost reasons. This is of little

consequence to accuracy, however, as the detailed vis-

cous features of the flow near the upper wall are neither
of interest here nor of any importance to the lower

portion. Subgrid-scale effects were represented by the

WALE model in STREAMLES and the DSM in LE-

SOCC. Despite the high resolution, especially in the

separated lower part of the flow, this difference is not

entirely unimportant, because the intense turbulence

activity in the separation zone tends to give rise to a

moderate level of SGS viscosity, especially when the
DSM model is used. Statistics were assembled for a

period of 55 flow-through times. These simulations and

their analysis, including considerations on stress bud-

gets, realisability maps and spectra, are the subject of

the companion paper (Mellen et al., 2002b). Here, only

some key facts are reported to provide a sufficient

Fig. 4. Streamwise velocity in channel flow; sensitivity to near-wall treatment.

Fig. 5. Turbulence intensities in channel flow; sensitivity to near-wall treatment.
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background for the coarse-grid study presented in the

next section.

A general view of the flow is conveyed in Fig. 1. The

plot shows a highly unsteady shear layer downstream of
the crest of the hill and the vortical motion which is

generated by the Kelvin–Helmholtz instability. Anima-

tions of the flow show the vortices to break up and to

undergo helical pairing. The mean streamlines in Fig. 1

demonstrate that reattachment occurs, as intended when

defining the geometry, on the lower plane channel wall,

well upstream of the next hill (see Table 3 for the exact

locations and note also the referencing system). As ob-
served in Section 2, this feature results in an especially

sensitive response of the recirculation zone to the reso-

lution of processes around the separation point and

in the separated shear layer, thus making this flow a

searching test case for the adequacy of coarse-grid LES

and the attendant approximations.

The level of agreement between the two highly-

resolved solutions is exemplified by Fig. 6 showing
profiles of the mean streamwise velocity and the corre-

sponding shear and normal stress (note that symbols are

used here and in following figures to distinguish lines

and do not indicate mesh nodes). The position has been

selected so as to show the point of maximum difference.

At other locations, such as x=h ¼ 6:0, the agreement is

substantially better (Mellen et al., 2002b). The velocity

profiles are clearly very close, while differences in the
normal-stress profiles are somewhat larger. In part, this

is due to differences in the level of the respective subgrid-

scale viscosity shown in Fig. 7. As observed in other

simulations of plane channel flow, the WALE model

tends to give considerably lower viscosity values than

the DSM, and this is also the case for the hill flow. While

both models return fairly low SGS viscosity levels, the
maximum viscosity ratio of order 2 predicted by the

DSM reflects the intense turbulence activity in the sep-

aration and post-reattachment zones close to the wall,

and this has a non-negligible effect on the simulated

quantities. The present simulations nevertheless provide

a sufficiently accurate foundation for assessing approx-

imate near-wall treatments in coarser-grid LES. As

will be seen in the next section, the differences arising
from different near-wall treatments are substantially

larger than those between the two highly-resolved sim-

ulations.

Of particular interest in the context of the study of

near-wall approximations are the wall-parallel velocity

profiles expressed in terms of wall coordinates. Five

such profiles, extracted from the simulation at different

streamwise locations at the lower wall, are shown in Fig.
8 in comparison with the standard log-law. Obviously,

the profiles are remote from the log-law, and this is al-

ready indicative of the anticipated difficulties in using

related wall-functions in the coarse-grid simulations to

be considered in the next section. While the absence of a

log-law in the separated region is not surprising, Fig. 8

demonstrates that no part of the reattached-flow profile

at x=h ¼ 6 conforms to the log-law either. Further
downstream, there is a trend towards a re-establishment

of the log-law, but this ceases when the flow accelerates

strongly on the wind-ward slope of the next hill. This is,

Table 3

Overview of computations discussed in the present paper

Case Grid SGS Wall Code ðx=hÞsep ðx=hÞreat
1 1 WALE NS STREAMLES 1.12 2.17

2 1 WALE WW STREAMLES 0.46 4.00

3 1 WALE WW-p STREAMLES 0.52 3.059

4 1 WALE LL2 STREAMLES 0.54 2.95

5 1 WALE LL2-i STREAMLES 0.41 3.95

6 1 WALE LL3 STREAMLES 0.53 2.98

7 1 WALE LLK STREAMLES 0.49 3.38

8 1 SMþWD WW STREAMLES 0.50 3.59

9 1 MSM WW STREAMLES 0.45 4.18

10 1 LDSM WW STREAMLES 0.47 3.56

11 1 SMþWD WW LESOCC 0.45 3.60

12 1 DSM WW LESOCC 0.50 3.20

13 1* DSM WW LESOCC 0.45 3.25

21 2 WALE NS STREAMLES 0.38 3.45

22 2 WALE LL3 STREAMLES 0.34 4.32

23 2 DSM BF LESOCC 0.37 4.14

24 2 WALE WW STREAMLES 0.32 4.56

25 2 SMþWD WW LESOCC 0.32 4.70

26 2 DSM WW LESOCC 0.30 4.23

27 2 DMM WW LESOCC 0.30 3.85

31 3 WALE NS STREAMLES 0.22 4.72

32 3 DSM NS LESOCC 0.20 4.56

The abbreviations for subgrid-scale and wall models are defined in Table 1. Case 13 is identical to Case 12 but, with twice the distance and grid planes

in the spanwise direction.
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thus, clearly a highly disturbed flow in which the near-

wall layer is not given an opportunity to recover to a

near-universal state––a condition aggravated by the

relatively low Reynolds number for which the semi-

viscous sublayer is relatively thick.
The fully-resolved simulations also allow an a priori

examination of the validity of the scaling underlying the

backflow wall function described in Section 4.4. Fig. 9

compares the profile provided by Eq. (15) against cor-

responding profiles extracted from the simulation at five

locations within the recirculation zone. As seen, the

backflow scaling is appropriate over most of the recir-

culation zone. Close to the separation and reattachment

points, the recirculation bubble becomes small and ef-
fectively collapses into the wall-adjacent cell, so that the

determination of the reference quantities and hence

matching become difficult. This issue is further discussed

below.

Fig. 7. SGS viscosity at x=h ¼ 2 for highly-resolved simulations 31 and

32.
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Fig. 8. Near-wall velocity profiles at five streamwise locations derived

from the highly-resolved simulation 31.

Fig. 6. Streamwise velocity, resolved streamwise stress and resolved shear stress at x=h ¼ 2 and 6 for Grids 1, 2 and 3, the WALE model and the NS

wall condition have been used in all cases except for simulation 32 which used the DSM model.
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8. Coarse-grid LES with near-wall approximations

8.1. Overview

The principal purpose of this study is to convey in-

sight into the predictive accuracy that can be achieved

by simulations of flow separating from curved surfaces

with grids deemed �economically tenable� in a practical
environment. Although the separated flow under con-

sideration is challenging, it must be born in mind that its

Reynolds number is still relatively low, and hence the

conditions simulated are fairly �benign�––say, in com-

parison to a separated wing flow at a typical Reynolds

number of 107. Real engineering flows are much more

demanding, and the sensitivity levels reported below are

likely to be considerably more severe in practice.
The range of simulations undertaken is summarised

in Table 3 (for abbreviations see Table 1). These simu-

lations were conducted along three parametric �axes�
intended to allow the contribution of resolution, SGS

modelling and near-wall approximation to be separated,

at least qualitatively. Simulations 1–13 have been per-

formed on Grid 1, shown in Fig. 2 (112� 64� 92 ¼
0:66� 106 interior cells). Of these, simulations 1–7, all
done with the WALE SGS model, are designed to

convey the sensitivity of the solution to the near-wall

treatment––including the two implementation options

explained in Sections 4.2 and 4.3, while simulations 8–

12, all undertaken with the Werner–Wengle wall func-

tion (WW), are intended to bring out the dependence of

the solution on subgrid-scale modelling for that grid.

Simulation 13 is identical to 12, except for the spanwise
extent and the number of spanwise grid planes, both of

which have been doubled in the former case to examine

spanwise decorrelation. Simulations 21–27 form a se-

lection from set 1–10 for the finer Grid 2, shown in Fig.

2 (176� 64� 92 ¼ 1:04� 106 interior cells). Computa-

tion 23 was specifically designed to examine the advan-

tages gained from using the backflow wall function in
the recirculation zone. Finally, cases 31 and 32 identify

the highly-resolved simulations which are the subject of

Section 7. All three grids employed in the current study

have been produced with an in-house grid-generation

programme based on the solution of an elliptic equation

with forcing terms adjusted so as to steer the positioning

of nodes. This yields smooth and almost orthogonal

grids, which is particularly beneficial in the context of
LES.

In Table 3, the two right-most columns give the

predicted time-mean separation and reattachment loca-

tions, obtained upon integration over at least 50 flow-

through times. These allow a number of interesting

points to be highlighted, ahead of the detailed discussion

of field data. First, it is observed that the recirculation

length varies greatly with mesh, wall-treatment and
SGS model: the shortest recirculation length is about 2

hill heights, in comparison to 4.5–4.7 returned by the

highly-resolved simulations. Second, attention is drawn

to the correspondence between simulations 8 and 11,

both performed with the Smagorinsky model and the

Werner–Wengle wall function, but with different codes.

Third, it is noted that doubling the spanwise extent (case

13 relative to 12) only results in a very minor change in
the predicted separation and reattachment points. This

reflects the fact, already noted in Section 2, that span-

wise correlation decays to insignificant levels, over most

of the flow, within a spanwise distance of 2 hill-heights.

Forth, the flow is evidently fairly sensitive to the im-

plementation details of any one of the wall-laws. Thus,

the simulation pairs ð2; 3Þ ¼ (WW,WW-p) and ð4; 5Þ ¼
(LL2,LL2-i) demonstrate a consistent difference between
the integrated and point-wise implementations, with the

former practice yielding a significantly longer recirula-

tion zone, in better accord with the highly-resolved so-

lution. Finally, as shown in Fig. 10, there is a fairly

strong correlation between the separation and reat-

tachment locations: typically, a forward shift of the

separation point by 0.15 hill heights results in a short-

ening of the recirculation zone by 1 hill height––a causal
relationship which will be revisited below. This brings

out an important difference between simulating a flow in

which separation is fixed by edges, relative to one in

which separation occurs from a continuous surface, es-

pecially when reattachment is not enforced by a geo-

metric feature or blockage causing early reacceleration.

8.2. Effects of resolution

Compared to the dense Grid 3, used for the highly

resolved simulations 31 and 32 in Table 3, two sub-

stantially coarser grids have been used to investigate
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Fig. 9. Near-wall backflow-scaled velocity profiles at five locations

within the recirculation zone, derived from the highly-resolved simu-

lation 32. The velocity scaling according to Eq. (15) is applied to the

simulation data while the continuous line represents Eq. (15) itself.
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issues of resolution and modelling. The coarsest �Grid 1�
(0:66� 106 cells) has a fairly uniform density over the
domain. The medium �Grid 2� is moderately finer

(1:04� 106 cells), but the refinement was introduced

preferentially around the hill crest, and the nodes were

redistributed in the y-direction so as to achieve a better

resolution at the lower wall.

An impression of the difficulties that are posed by

using �coarse� grids for separated flow is conveyed by

Table 4, Figs. 6 and 10. Fig. 6 shows profiles of velocity,
(resolved) streamwise normal stress and shear stress at

two locations, x=h ¼ 2 and 6, i.e. within the separation

bubble and after reattachment. Results are compared

for the three grids employed using the same SGS model

(WALE) and the same NS wall condition. This bound-

ary condition might appear inappropriate for the

coarsest grid––although it has been used with consid-

erably coarser meshes in wavy-wall simulations (e.g.
Salvetti et al., 2001). However, as is evident from Fig.

11, the time-averaged yþ-values corresponding to the

distance between the lower wall and the first grid plane

are mostly below 8; the peak value of 14 arises at the

crest of the hill, following the strong acceleration on

the windward side. Thus, while a NS condition is un-

doubtedly a poor approximation, it might not be ex-

pected to be disastrously bad. However, when this
condition is used in combination with poor resolution

around the separation point, it leads to a serious mis-

representation of the entire flow, principally because of

the substantial downstream shift in the separation point.

As the wall shear strain is evaluated, in this case, using a

linear approximation to the near-wall velocity, the re-

sulting shear stress is underestimated relative to both the

real value and that arising from a log-law-based wall

function. Hence, following acceleration, flow-retarda-

tion by wall shear is inhibited, and separation is thus
delayed. Since the separation bubble is much shorter the

hui-profile at x=h ¼6 is much fuller, the substantially

lower shear strain at that location being compatible with

a much lower level of turbulence intensity and shear

stress. Upstream of reattachment, at x=h¼ 2, the sepa-

rated shear layer returned by the coarsest grid is

significantly lower and more turbulent than the highly-

resolved layer, as is reflected by the higher fluctuation
intensity and shear stress. This higher level of turbulence

intensity is consistent with the smaller distance between

the separation point and the profile location in question

(x=h ¼ 2), together with the fact that the turbulence in-

tensity reaches a maximum a short distance downstream

of the separation location. Hence, it seems clear that the

realism of the solution in the vicinity of the separation

location is crucially important. An inappropriate
downstream shift gives the wrong (mean) separation

height and angle, and this, coupled with strong mixing

immediately following separation, encourages rapid re-

attachment.
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Fig. 10. Correlation between separation and reattachment locations, þ
identifies data obtained with Grid 1, � identifies data obtained with

Grid 2. The lines indicate the streamwise internodal distance (nor-

malised by h) in the separation region.

Table 4

Sensitivity of separation and reattachment locations to grid parameters at the hill crest

Case ðx=hÞsep ðx=hÞreat Grid size (NX � NY � NZ) ðDx=hÞsep Dxcrest=h Dycrest=h Dzcrest=h

1 1.12 2.17 112� 64� 92 0.065 0.08 0.032 0.049

21 0.38 3.45 176� 64� 92 0.039 0.04 0.02 0.049

31 0.22 4.72 196� 128� 186 0.032 0.032 0.0033 0.024
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Fig. 11. Universal wall-distance along the line passing through the

centre of the wall-adjacent cells close to the lower walls; from simu-

lations 1 and 21 using the WALE SGS model and the WW wall

function.
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Evidently, the grid resolution around the hill crest,

where separation occurs, is highly influential. Table 4

gives, for the 3 grids employed, the value of the

streamwise cell length, Dx around the time-mean sepa-
ration point and the cell dimensions (in wall units) just

above the hill-crest (see also the horizontal line segments

in Fig. 10). Although the position of the separation line

varies in time within the wide range of )0.05h and 0.7h,
the expectation must be that the separation point cannot

be determined to a precision substantially better than

the cell length, 0.08h in the case of Grid 1. The associ-

ated margin in the reattachment location, implied by
Fig. 10, is of order 0.5h, and such a shift results in a

substantial change to the entire flow. Thus, subject to

uncertainties arising from the crude NS condition used

here, it may be stated that grid resolution around the

separation location is especially important and, poten-

tially, of major consequence to the predicted gross flow

features. As the instantaneous position of separation

shifts across a significant portion of the hill surface,
adequate grid density must be provided over the entire

region in which separation is expected to occur.

8.3. Sensitivity to near-wall modelling on the coarsest grid

Although the streamwise resolution around the sep-

aration point is evidently a key factor, the near-wall

treatment can also be expected to be a major contribu-
tor to predictive accuracy, if only because the near-wall

yþ-value in the hill-crest region is high and the separa-

tion point is clearly sensitive to the details of the flow

conditions in this region.

An overall view of the dependence of the flow on the
near-wall approximation, on the coarsest grid, is given

in Table 3, cases 1–7. All simulations were performed

with the WALE model. Clearly, the separation charac-

teristics are highly sensitive to the near-wall approxi-

mation, and this is brought out especially well relative

to the NS implementation. In all cases, separation is

delayed and reattachment is early. While the latter is

linked to the former (see Fig. 10), as discussed in the
previous subsection, it is evident that the near-wall ap-

proximation also has a direct influence on the reattach-

ment location. This fact is implied, albeit qualitatively,

by the scatter in Fig. 10.

Profiles of velocity, streamwise normal stress and

shear stress, obtained with the various near-wall ap-

proximations, are shown in Fig. 12. All three log-law-

based approximations, when implemented in their
standard (point-wise) form, return solutions which are

better than that obtained with the NS condition, but

which are nevertheless far from the highly-resolved

simulation, especially in the post-reattachment region.

In contrast, the default (cell-integrated) Werner–Wengle

approximation (WW) returns a much better solution,

which is remarkably close to the highly-resolved simu-

lation. As will be demonstrated below, this is mainly the
consequence of the cell-integrated implementation. Of

Fig. 12. Streamwise velocity, resolved streamwise stress and resolved shear stress at x=h ¼ 2 and 6 using four wall-treatments and the WALE model

on the coarsest grid.
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the three log-law approximations, that using hki as the

velocity scale in the log-law (LLK) offers a modest ad-

vantage in terms of the separation and reattachment

locations, but not in respect of other quantities. It
should be noted that this variant differs fundamentally

from the other two in its use of a time-averaged rather

than instantaneous velocity scale in the log-law. This

effectively established, for any one near-wall cell, a linear

relationship between the near-wall velocity and the shear

velocity, in the same sense as that established by Schu-

mann�s wall law (Schumann, 1975). Moreover, a sig-

nificant uncertainty with this variant arises from the
inaccuracy in determining the near-wall turbulence

energy on the coarsest grid use. This is especially

problematic in the vicinity of the separation point.

As is the case with the NS implementation, late sep-

aration is accompanied by higher turbulence activity in

the separated shear layer (at a given x=h location), early

reattachment and lower post-reattachment turbulence

activity. Although, as argued earlier, a forward shift in
the separation location is associated with an increase in

turbulence levels at given streamwise x=h positions, this

causal relationship is not firm, for some simulations

show significant differences in maximum turbulence

levels in the shear layer together with quite similar

separation locations. This suggests that, at least with the

coarse grid used here, separation and post-separation

behaviour is sensitive to the structure of the boundary
layer as it approaches separation and, arising from this,

also to structural features in the separated shear layer

itself. The boundary layer is, in turn, materially influ-

enced by the near-wall treatment, especially in the

hill-crest region where yþ values along the wall-nearest
grid-line are high.

Fig. 1 demonstrates, by way of pressure contours,

that the shear layer contains a coherent motion associ-

ated with the Kelvin–Helmholz-like vortices, a process

identified most clearly in animations performed for this

flow. This organised motion contributes directly to the

turbulence level in the shear layer, as well as interacting

sensitively with the temporal variation of the separation
process. The details of the coherent component are,

however, influenced by the near-wall treatment, and this

link is thus one potential source for the variability in the

statistical behaviour observed in Fig. 12.

Fig. 13 conveys the fact that the exceptional behav-

iour of the WW wall law displayed in Fig. 12 is not

essentially due to the different velocity profile forming

the basis of that wall law, but arises, primarily, from the
nature of its implementation. The figure compares four

solutions, two obtained with the point-wise and two

with the cell-integrated implementations of the wall laws

LL2 and WW. As seen, there is fairly close corre-

spondence between the two point-wise forms (LL2 and

WW-p) and similarly close agreement between the

two cell-integrated variants. The latter pair both give

solutions which are significantly closer to the highly-
resolved simulation. This level of sensitivity to the

Fig. 13. Streamwise velocity, resolved streamwise stress and resolved shear stress at x=h ¼ 2 and 6 using the point-wise and cell-integrated forms of

LL2 and WW wall-treatments and the WALE model on the coarsest grid.
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implementation details is remarkable, and is most likely

linked to influential differences in the level of the wall-

shear stress returned by the two implementations. A

priori studies on plane, fully-developed channel flow, in
which DNS velocity profiles were fed into both imple-

mentations of the LL2 and WW wall-functions, have

shown that both integrated forms give consistently

higher wall-shear values than the point-wise forms, the

latter returning values that are closer to the DNS level

when the wall-nearest node is beyond yþ ¼ 16. A higher

wall-shear stress level (traction) just upstream of the

separation point encourages, all other conditions being
unchanged, a slightly earlier separation, apart from

possibly influencing the organised behaviour in the shear

layer, via the mechanism considered earlier.

The overall conclusions emerging from the above

results is, therefore, that even relatively minor variations

in the near-wall treatment can have major effects on the

separation behaviour and the structural features in the

separated layer, thus materially affecting gross flow
features if the streamwise resolution is coarse, especially

around the separation point.

8.4. Sensitivity to SGS models on the coarsest grid

An overall view of the sensitivity of the solution to

SGSmodelling, on the coarsest grid, is conveyed in Table

3, cases 8–12 and 2. In general, the coarser the grid, the

more influential the SGS model is expected to be. Hence,

it is of interest to undertake a study of the sensitivity to

SGS modelling on Grid 1, even if this grid is known to

offer relatively poor resolution in the separation region.
All simulations were performed with the default (cell-

integrated) form of the Werner–Wengle wall law (WW),

shown earlier to give, alongside LL2-i, the most fa-

vourable agreement with the highly-resolved simulation.

Reference to Table 3 and to Figs. 14 and 15, the latter

showing mean-velocity and turbulent-stress profiles,

allows the overall observation that sensitivity to SGS

modelling, even on the coarsest grid, is not especially
pronounced, and this reinforces the comments made

earlier about the importance of the near-wall approxi-

mation as the major source of variability among simu-

lations on the coarsest grid.

The separation point is seen to be rather insensitive

to the SGS model, while the reattachment point is

somewhat more sensitive. This is a consequence of the

dependence of the former primarily on the upstream
near-wall flow, while the latter responds to both the

separation point and the processes in the post-separation

shear layer which are likely to be sensitive, to a greater

extent, to SGS modelling. Among the SGS models, the

WALE model and the MSM give the longest recircula-

tion length, closest to the reference. The dynamic models,

on the other hand, tend to return the shortest recircula-

tion regions.

Fig. 14. Streamwise velocity, resolved streamwise stress and resolved shear stress at x=h ¼ 2 and 6 using three SGS models together with the WW wall

function on the coarsest grid.
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Since the SGS model affects the simulated solution

via the introduction of an SGS viscosity, and hence SGS

stresses, it is instructive to examine the level of viscosity

returned by different models. To this end, profiles of the

time-averaged SGS viscosity at the locations x=h ¼ 2

and 6 are given in Fig. 16. As seen, the SGS viscosity

level varies between approximately 1 and 4 times the

fluid viscosity, with the mixed-scale and damped Sma-
gorinsky models giving low values, the dynamic models

giving high levels and the WALE model being in the

middle of the range. While Table 3 suggests an associ-

ation between low levels of SGS viscosity and long re-

circulation zones, and hence improved agreement with

the reference simulation, this association is not unam-

biguous, as is exemplified by the result with the damped

Smagorinsky model. Broadly consistent with the above

trend is the observation, from Figs. 14 and 15, that

models returning relatively low values of SGS viscosity

(MSM, WALE, SMþWD) also give rise to lower values

of resolved turbulent stresses and closer agreement with

the reference simulation.

This is not a behaviour that concurs with initial ex-

pectations: a high SGS viscosity is expected to cause
smoothing (damping) of the resolved scales close to the

wave-number cut-off, and thus to lead to a reduction in

the resolved stresses. The opposite would then be ex-

pected to occur when the SGS viscosity decreases.

However, this line of reasoning is based on a consider-

ation of isotropic turbulence, with the cut-off located

well within the inertial range, not far from the dissipative

Fig. 16. SGS viscosity at x=h ¼ 2 and 6 using five SGS models and the WW wall function on the coarsest grid.

Fig. 15. Streamwise velocity, resolved streamwise stress and resolved shear stress at x=h ¼ 2 and 6 using the WALE and the DSM model together

with the WW wall function on the coarsest grid (computed with two different codes).
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limit. The present flow, in contrast, exhibits significant

anisotropy in the resolved motion at the cut-off, due to

the coarseness of Grid 1, and hence different energy-

transfer characteristics across the large-scale part of the
spectrum. This applies, in particular, to the post-sepa-

ration shear layer. As noted earlier, by reference to Fig.

1, the shear layer contains anisotropic coherent struc-

tures with relatively large spanwise extent. Animations

reveal that the vortices undergo fairly pronounced he-

lical pairing, whilst breaking up as they are convected

downstream. Higher viscosity slows down this process,

tending to reduce the generation of spanwise fluctuation
by a dynamic redistribution of kinetic energy. This en-

courages the persistence of the large-scale two-dimen-

sional anisotropic features, which then tends to result in

elevated levels of resolved fluctuations, as is observed in

other configurations (Mellen et al., 2002a).

8.5. Comparisons for the medium Grid 2

In accord with expectation, refinement of the grid

results in an improvement in the predicted flow, both in

respect of the separation and the reattachment positions.

At the same time, the dependence on the near-wall ap-

proximation declines, as is seen from Fig. 17. It is re-

called, however, that the refinement is highly localised

and selective, involving mainly an increase in the

streamwise grid density in the vicinity of the hill crest.
The result is a more accurate resolution of the separa-

tion process. The importance of this specific aspect of

the simulation has been highlighted already by reference

to the coarse-grid results. Evidently, it is this improve-

ment which is principally responsible for the substantial
overall improvement in the predicted flow field. Thus,

the streamwise resolution, especially around the sepa-

ration location, is clearly as influential as the near-wall

approximation, if not more so. Reference to Fig. 17

shows that, among the wall treatments, the NS condi-

tion remains poor, while the Werner–Wengle approxi-

mation performs best, as it did with the coarse grid. In

fact, the departure of the WW solution from the highly-
resolved simulation is almost insignificant in respect of

both the mean flow and turbulence quantitities. This

simulation, case 24 in Table 3, also gives separation and

reattachment points close to those of the highly-resolved

solution.

The performance of the backflow model, Section 4.4,

is contrasted in Figs. 18 and 19 to that returned by the

Werner–Wengle approximation, the latter figure show-
ing the predicted shear-stress distributions on the lower

wall. Since the Werner–Wengle law yields a reasonably

good representation of the highly-resolved variation,

there is not much room for improvement when the

backflow model is used on the same grid. Thus, the

solution is similarly close to the reference solution. Also,

the computed wall-shear stress is close to the reference

variation over most of the backflow region. The small
kink at the reattachment point is due to an implemen-

Fig. 17. Streamwise velocity and resolved shear stress at x=h ¼ 2 and 6 using three near-wall approximations together with the WALE model on

Grid 2.
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tational issue. When the recirculation bubble is thin, the

maximum backflow velocity and its location fall into the

first cell. This could be smoothed out by a slight ad-

justment of the formulation, but the local shear stress is

so low as to render it uninfluential. To take greater

advantage of the backflow model, the grid would have

to be coarser near the wall. With the current grid, the

distance of the wall-adjacent grid point in the recircu-

lation zone, in wall units, reaches a maximum of ap-

proximately 5 at around x=h ¼ 2 and is smaller

elsewhere in the bubble (Fig. 11). For a higher Reynolds
number, the difference between the WW and the back-

flow model would be expected to be larger.

The sensitivity to SGS modelling on the medium grid

is shown in Figs. 20 and 21 for x=h ¼ 2 only. Four so-

lutions are included, corresponding to cases 24–27 in

Table 3, all obtained with the WW wall approximation.

The WALE, SM, and DSM SGS models all return

broadly satisfactory solutions. WALE and DSM per-
form slightly better than SM, but the overall variation is

small.

An exception is the DMM, which performs less sat-

isfactorily. The present implementation includes span-

wise averaging to regularize the dynamic coefficient and

no further smoothing. Unfortunately, point-to-point

oscillations in the viscosity are created near the walls,

and these cause an abnormal behaviour, especially at the
upper wall where oscillations are most pronounced. The

origin of the problem is probably the explicit grid fil-

tering this model involves (see Section 3.3). When the

DMM is used on a wall-resolving grid for low-Re
channel flow, the results are good––indeed, even better

Fig. 18. Streamwise velocity and resolved shear stress at x=h ¼ 2 using the WW and BF near-wall approximations together with the DSM model on

Grid 2.
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Fig. 19. Time-mean wall shear stress at the lower wall obtained with

the SGS model in conjunction with the WW wall function, and with

the DSM SGS model in conjunction with the BF wall function on

Grid 2.

Fig. 20. Streamwise velocity at x=h ¼ 2 using four SGS models together with the WW near-wall approximations on Grid 2.
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than those returned by the DSM. Here, however, the

wall-function grid is coarse, generating high gradients at

the boundaries and large entries in the Leonard tensor

and thus introducing too much backscatter which is not

sufficiently damped by the eddy viscosity. This beha-

viour was not observed in the study by Salvetti et al.

(2001), where a two-parameter model, similar to the

present form, was applied within a coarse-grid simula-
tion of a wavy-terrain flow. It is possible that the more

successful application of the model in that study is as-

sociated with the NS and free-slip conditions applied at

the lower wall and free upper boundary, respectively.

9. Conclusions

Large eddy simulations of a fully turbulent flow

separating from a curved wall in a channel have been

presented. The emphasis of the study has been on

identifying the influence of resolution, SGS modelling

and near-wall modelling on the accuracy of the simu-

lations. Employing two different codes with the same

grids allowed careful cross-checking to be done, thus

enhancing confidence in the results.
Simulations on a coarse grid have highlighted the

outstanding importance of an adequate streamwise res-

olution of the flow in the vicinity of the separation line.

This importance arises from the fact that the reattach-

ment position is highly sensitive to that of separation,

and so is the entire flow. Although the separation line

varies in time over a substantial region around the mean

location, the precision with which the latter is predicted
is, at best, of the order of the local mesh size. In specific

terms, a streamwise resolution of 0.08h around the mean

separation location can be expected to produce an error

margin in the reattachment position of order 0.5h. In-

deed, the present study suggests that this is a rather

optimistic estimate.

The dependence of the solution on different practices

of near-wall and SGS modelling has been investigated
on two grids and compared to highly-resolved reference

simulations. The results have been found to be surpris-

ingly sensitive to the nature of the numerical imple-

mentation of the wall laws, rather than to the precise

assumptions of the velocity profiles underpinning them.

The best performance was obtained with cell-integrated

implementations of either the log-law or the Werner–

Wengle approximation. The differences between the

point-wise and cell-integrated implementations is due to
the latter returning higher levels of wall-shear stress than

the former, all other conditions being the same. This

encourages earlier separation and hence better corre-

spondence with the highly resolved simulation. The BF

wall law, while resting on a firmer physical foundation

in the presence of recirculation, was not found to offer

clear predictive advantages in the flow investigated

herein.
It must be acknowledged that the relatively low

Reynolds-number of the flow led to the wall-nearest

computational point lying within the semi-viscous wall

layer over most of the lower wall bordering the sepa-

ration zone. Also, a priori studies, exploiting the highly-

resolved simulation data, have demonstrated that the

near-wall flow did not conform to the velocity profiles

underpinning the wall laws, except for the case of back-
flow wall law within the recirculation zone. This inevi-

tably limits the generality of the conclusions derived in

respect of near-wall modelling.

The sensitivity of the solution to SGS modelling has

been found to be weaker than to variations in resolution

and near-wall treatment. Of the SGS models examined,

the WALE and the MSM performed best, in so far as

the related coarse-grid solutions came closest to the
highly-resolved simulation. Both models returned rela-

tively low levels of SGS viscosity, although the latter

was shown to give an incorrect wall-asymptotic viscosity

variation in wall-resolved channel-flow simulations.

Further studies are clearly needed for flows at higher

Reynolds numbers, but this poses the problem of gen-

erating sufficiently detailed and accurate benchmark

data at tolerable cost. The present study at least suggests
that resolution parameters are likely to be especially

Fig. 21. Resolved shear stress at x=h ¼ 2 using four SGS models together with the WW near-wall approximations on Grid 2.
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critical in other flows involving separation from gently

curved surfaces, such as highly-loaded aerofoils and

blades. Configurations of this type arguably require

preferential attention to identify the capabilities of LES
in conditions more challenging than those examined

herein. Particularly interesting would also be the appli-

cation of an unstructured LES method, capable of local

refinement near the crest of the hill, including refinement

in the spanwise direction.
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